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Abstract

Several neuroimaging studies have investigated localized aberrations in brain structure, function or connectivity
in late-life depression, but the ensuing results are equivocal and often conflicting. Here, we provide a quantitative
consolidation of neuroimaging in late-life depression using coordinate-based meta-analysis by searching multiple
databases up to March 2020. Our search revealed 3252 unique records, among which we identified 32 eligible
whole-brain neuroimaging publications comparing 674 patients with 568 controls. The peak coordinates of group
comparisons between the patients and the controls were extracted and then analyzed using activation likelihood
estimation method. Our sufficiently powered analysis on all the experiments, and more homogenous subsections
of the data (patients > controls, controls > patients, and functional imaging experiments) revealed no significant
convergent regional abnormality in late-life depression. This inconsistency might be due clinical and biological
heterogeneity of LLD, as well as experimental (e.g., choice of tasks, image modalities) and analytic flexibility (e.g.,
preprocessing and analytic parameters), and distributed patterns of neural abnormalities. Our findings highlight the
importance of clinical/biological heterogeneity of late-life depression, in addition to the need for more reproducible
research by using pre-registered and standardized protocols on more homogenous populations to identify potential
consistent brain abnormalities in late-life depression.

Keywords: Late-life depression; Activation likelihood estimation; Functional magnetic resonance imaging; Voxel-
based morphometry; Positron emission tomography.

1 Introduction

Late-life depression (LLD) is defined as major depressive
disorder (MDD) in patients over the age of 50 (Vaishnavi
& Taylor, 2006). This definition includes both late-onset
depression (LOD), in which depression has started in
later life, and early-onset depression (EOD), in which
depression is first diagnosed in early adulthood and
continues into older ages. In the year 2017 the global
number of individuals with MDD who were older than
50 was estimated at about 60 million. In the general
population and among the age groups of 50-69 and over
70, the prevalence of MDD was estimated at 3.3% and
3.7%, respectively, causing 2.5% and 3.8% of the total
years lost due to disability (YLD) in these age groups.
With the aging of the populations, the global number of
LLD patients has increased by 27.1% from 2007 to 2017

(Global Burden of Disease Collaborative Network, 2018).
LLD has detrimental effects on the mental well-being
of the patients, and can lead to emotional impairment,
cognitive dysfunction, and medical problems. It is a
heterogeneous neuropsychiatric syndrome with vari-
able presentations, including depressed mood, anxiety,
psychomotor retardation, fatigue, feelings of guilt, hope-
lessness, worthlessness, and restricted mental, physical
or social functioning (Nelson, Clary, Leon, & Schnei-
der, 2005; Rutherford, Taylor, Brown, Sneed, & Roose,
2017; Szanto et al., 2012). In addition, cognitive dysfunc-
tion occurs in 20-25% of the patients and may involve
impaired executive functioning, information process-
ing and concentration, as well as explicit learning and
memory (Elderkin-Thompson, Moody, Knowlton, Helle-
mann, & Kumar, 2011; Koenig, Bhalla, & Butters, 2014;
Lamar, Charlton, Zhang, & Kumar, 2012). The cognitive
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dysfunction may further progress and in some cases
precedes Alzheimer’s disease, which has an increased
risk of 65% in LLD patients (Butters et al., 2008; Diniz,
Butters, Albert, Dew, & Reynolds, 2013). In addition,
LLD may be associated with amyloid beta accumula-
tion (Mahgoub & Alexopoulos, 2016; Wu et al., 2014),
although some studies have found normal or decreased
amyloid beta accumulations in these patients (De Win-
ter et al., 2017; Mackin et al., 2021). Furthermore, LLD
increases the risk of developing/exacerbation of chronic
medical diseases such as diabetes mellitus, cardiovas-
cular diseases, and arthritis (Karakus & Patton, 2011;
Zivin, Wharton, & Rostant, 2013). Older adults with
depression are also at a greater risk of mortality, both
from suicide, and by an increased rate of cardiovascular
diseases (Wei et al., 2019). Despite its detrimental ef-
fects, depression in older adults is underdiagnosed and
poorly responds to treatment, highlighting the need for
more clear understanding of its neurobiology (Manning,
Wang, & Steffens, 2019).

Aiming to unravel the neurobiological mechanisms of
LLD, several neuroimaging studies have investigated lo-
calized abnormalities of the brain structure, function and
connectivity, using voxel-based morphometry (VBM),
task-based and resting-state functional magnetic reso-
nance imaging (t-fMRI and rs-fMRI), and positron emis-
sion tomography (PET). Although these studies have
advanced our understanding on the neural correlates of
LLD, they have often reported conflicting and hetero-
geneous results. For example, structural neuroimaging
studies have variably reported cortical atrophy or hy-
pertrophy of cortical regions such as the orbitofrontal
cortex, precuneus, lateral temporal, cingulate or insula
(Byun et al., 2016; Harada et al., 2016; Hwang et al.,
2010; Oudega et al., 2014; Smith, Kramer, et al., 2009). In
addition, functional neuroimaging studies have found
abnormalities, including increased or decreased func-
tional activation or connectivity, in various structures
such as the superior and inferior frontal gyri, precuneus,
precentral gyrus, cingulate gyrus, parahippocampal cor-
tex, cerebellum, or putamen (Bricenõ et al., 2015; Dom-
brovski, Szanto, Clark, Reynolds, & Siegle, 2013; Liu et
al., 2012; Smith, Kramer, et al., 2009; Yuan, Zhang, et al.,
2008).

In the context of these inconsistent findings, meta-
analytic approaches are valuable tools for quantita-
tively consolidating the effects observed across the pub-
lished literature in order to identify convergent findings
(Müller et al., 2018; Tahmasian et al., 2019). Activation
likelihood estimation (ALE) is a state-of-art coordinate-
based meta-analysis (CBMA) method that identifies spa-
tial convergence (or lack thereof) across findings of indi-
vidual studies, and distinguishes true convergence from
random overlap (Eickhoff, Bzdok, Laird, Kurth, & Fox,

2012).
Of note, recent CBMAs on MDD have failed to de-

termine convergence in their primary analyses, but re-
vealed effects for restricted sub-analyses of the data,
which may hint at the data heterogeneity (Gray, Müller,
Eickhoff, & Fox, 2020; Müller et al., 2017). And in-
deed, psychopathologically, LLD differs from depres-
sion in early adulthood e.g., by increased prevalence
of cognitive dysfunction and somatic symptoms, but
less dominant sadness feeling (Fiske, Wetherell, & Gatz,
2009; Hegeman, Kok, van der Mast, & Giltay, 2012),
and a weaker response to the antidepressants (Tedes-
chini et al., 2011). In addition, imaging findings such
as hippocampal atrophy, or microvascular lesions, are
more common/severe in LLD patients (Aizenstein et al.,
2016; McKinnon, Yucel, Nazarov, & MacQueen, 2009).
Therefore, and based on these differences between mid-
and late-life depression, a neuroimaging meta-analysis
restricted to LLD is much needed to identify conver-
gent neuroimaging findings specific to this age group.
Here, we used the ALE method on the reported brain
differences of LLD patients and healthy individuals de-
rived from the whole-brain structural and functional
neuroimaging studies, to provide a quantitative assess-
ment of convergence across published literature.

2 Methods

This study was pre-registered on the International
Prospective Register of Systematic Reviews (PROSPERO,
code: CRD42019115872), and is reported according
to the Preferred Reporting Items for Systematic Re-
views and Meta-Analyses (PRISMA) statement (Moher,
Liberati, Tetzlaff, Altman, & Group, 2009). Here, we
followed the most recent best-practice guidelines for
neuroimaging meta-analyses (Müller et al., 2018; Tah-
masian et al., 2019), to perform an ALE meta-analysis
on the neuroimaging studies comparing LLD patients
with healthy control (HC) participants.

2.1 Search and study selection

We searched PubMed, Embase, Scopus, and Web of Sci-
ence databases in March 2020 using the following search
terms: (elderly OR geriatric OR "late life" OR "later life"
OR "late onset" OR older OR "old age") AND (depress*
OR MDD) AND ("voxel based morphometry" OR VBM
OR "functional magnetic resonance imaging" OR fMRI
OR "Positron-Emission Tomography" OR PET). The de-
tailed search strategy for each database is reported in
Table S1. In addition to the records obtained by the
search, we traced the references of relevant neuroimag-
ing reviews/meta-analyses and the included studies. Af-

2



Late-life depression ALE

ter removing records duplicated in multiple databases,
a total of 3253 unique records were screened by two
independent reviewers (A.S., E.M.). The screening was
performed in two stages, first using titles and/or ab-
stracts, and then using full texts of the potentially rele-
vant records identified in the first stage.

We included original studies in which: (1) depression
was diagnosed through an interview and using standard-
ized diagnostic criteria (i.e. Diagnostic and Statistical
Manual of Mental Disorders [DSM], or International
Classification of Diseases [ICD]), (2) patients had no
major psychological or neurological comorbidities, such
as dementia, stroke, Parkinson’s disease, or psychosis
(although comorbid anxiety was allowed due to its high
co-occurrence with depression [Beekman et al., 2000]),
(3) patients were compared to elderly healthy control
individuals, (4) all participants in both groups were > 50
years old, (5) whole-brain structural or functional grey
matter differences were assessed using rs-fMRI, t-fMRI,
VBM, or PET, (6) analysis was not limited to a region of
interest (ROI), and small volume correction (SVC) was
not performed, as these approaches are biased toward
finding significance in the respective regions, hence vi-
olating the assumption of ALE method that all voxels
of the brain have a unified chance of being reported
(Müller et al., 2018; Tahmasian et al., 2019), (7) patients
were not part of an interventional study, unless a base-
line comparison with healthy controls was reported, (8)
peak coordinates of significant findings were reported
in Montreal Neurological Institute (MNI) or Talairach
standard spaces, or were provided by authors upon our
request. Of note, we excluded the studies with no signif-
icant findings (Colloby et al., 2011; Delaloye et al., 2010;
Marano et al., 2015; Patel et al., 2012; Sexton et al., 2012;
Sin et al., 2018; Smith, Reynolds, et al., 2009; Vanyukov
et al., 2015; Weber et al., 2010, 2012), as ALE method is
aimed at identifying spatial convergence of findings, for
which these studies contributed no data.

2.2 Data extraction

The extracted data consisted of bibliographic informa-
tion (first author, title, journal, country and institute),
demographic and clinical data (number of participants,
age, sex, age of onset, clinical status, medication sta-
tus), methodological details (imaging modality, scanner
field strength, task name and domain, software pack-
age, analysis approach, covariates, method of multi-
ple comparison correction), and the peak coordinates
of between-group experiments reported in each study.
Notice that here, “study” refers to an individual publi-
cation, whereas “experiment” refers to individual con-
trasts reported within a “study” (e.g. LLD > HC, and HC
> LLD), each yielding a distinct set of coordinates. Co-

ordinates reported in Talairach space were transformed
into MNI space (Lancaster et al., 2007), so that all the ex-
periments are in the same reference space. If the applied
reference space was not explicitly reported or provided
by authors at our request, as suggested, we estimated it
from the default settings of the software packages used
for normalization - i.e., FSL, SPM and FreeSurfer use
MNI, while BrainVoyager uses Talairach (Müller et al.,
2018; Tahmasian et al., 2019).

In ALE meta-analyses, pooling the data from overlap-
ping samples causes spurious findings by improperly
increasing the influence of that sample (Turkeltaub et
al., 2012). Therefore, we took great care to avoid con-
vergence over analyses performed on (partially) over-
lapping samples, both within and across papers. We
reviewed the included studies for signs of overlap with
other studies, by examining their team members, loca-
tion of study, recruitment interval, and sample demo-
graphics, and merged their data in such cases. For the
same reason, in both primary and complementary ALE
analyses (see below), all the coordinates from multiple
experiments (i.e., LLD > HC or HC > LLD, different
imaging modalities, or different tasks) pertaining to the
same subjects were merged, to make sure that in all anal-
yses each sample is only represented by one experiment.

2.3 Activation likelihood estimation

The revised version of the ALE method (Eickhoff et
al., 2012) was used to test the spatial convergence of
the reported differences, against the null hypothesis of
randomly distributed findings across the brain. In this
method, the peak coordinates, or foci, are convolved
with 3D Gaussian probability distributions that have
a full width at half maximum (FWHM) inversely pro-
portional to the sample size. This allows experiments
with larger samples to have a greater statistical certainty
in the meta-analysis. Next, for each experiment, the
convolved foci are combined to generate per-experiment
“modeled activation” (MA) maps. Subsequently, the
MA maps for all the experiments included in the meta-
analysis are combined into an ALE score map, represent-
ing the convergence of results at each particular location
of the brain. The ALE score map is then statistically
tested against a null distribution reflecting randomly
distributed findings, to distinguish true convergence
from by-chance overlap (Eickhoff et al., 2012; Turkeltaub
et al., 2012). Finally, to avoid spurious findings, the
resulting p-values are corrected for multiple comparison
using the stringent family-wise error correction at the
cluster level (cFWE), thresholded at p < 0.05 (Eickhoff,
Laird, Fox, Lancaster, & Fox, 2017). All these procedures
were implemented using an in-house MATLAB script.

We performed separate ALE meta-analyses on differ-
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Records after duplicates removed
(n = 3253)

Records screened
(n = 3253)

Records excluded (n = 3151)
Not LLD (2386), Review, editorial or comment (174), Case Report 
(24), Animal study (3), Not a structural or functional neuroimaging 
study on gray matter (298), LLD with other comorbidities (45), No 
healthy control group (32), Interventional (49), ROI or volumetric 
analysis (107), Not English (1), Conference abstract with no 
coordinates (32)

Full-text papers assessed for 
eligibility
(n = 102)

Full-text papers excluded (n = 70)
MDD diagnosed using questionnaires (2), Age cut-off < 50 (8), 
Not a structural or functional neuroimaging study on gray matter 
(12), ROI analysis or SVC (31), No between-group contrast (3), 
No coordinates (4), Non-significant results (10)

Independent samples included in the meta-analyses
(n = 26)

Experiments based on imaging modality (multiple modalities were used for some samples):
• 13 t-fMRIa (7 with cognitive tasks, 6 with emotional tasks)
• 8 rs-fMRIb (3 ReHo, 3 ALFF,  1 DC, 1 VMHC)
• 9 VBM
• 2 PET (1 with a cognitive task, 1 resting-state)

Eligible papers assessed for overlap in study populations
(n = 32)

Figure 1: Study selection flowchart.

LLD: late-life depression; MDD: major depressive disorder; ROI: region of interest; SVC: small volume correction;
rs-fMRI: resting-state functional magnetic resonance imaging; t-fMRI: task-based functional magnetic resonance imaging;
ReHo: regional homogeneity; ALFF: amplitude of low frequency fluctuations; DC: voxel-wise degree centrality; VMHC:
voxel-mirrored homotopic connectivity; VBM: voxel-based morphometry; PET: positron emission tomography. a Two
different types of cognitive tasks and one emotional task were used for the same sample. b Both ReHo and ALFF were
used in the same sample.

ent sets of experiments. In the primary analysis, to in-
vestigate all the brain abnormalities, including increased
or decreased gray matter density, functional activation,
or functional connectivity, we assessed the convergence
across all the experiments. Next, we split the exper-
iments by the direction of effect (HC > LLD or LLD
> HC), imaging modalities (VBM, rs-fMRI, t-fMRI, or

PET), task domains (cognitive vs. emotional), age of on-
set (LOD vs. EOD), or disease status (acutely depressed
vs. patients in remission), and performed complemen-
tary analyses on more homogeneous subsections of the
data that fulfilled the requirement of representing at
least 15 experiments for sufficient power (Eickhoff et al.,
2016).
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2.4 ROI-based analysis

In addition to the whole-brain analysis, we investigated
the convergence of the reported coordinates within the
7 cortical resting-state networks defined by (Yeo et al.,
2011) which includes the visual, somatomotor, dorsal
attention, salience / ventral attention, limbic, control
and default networks. For each network, we used a
permutation test to compare the sum of all ALE values in
the network to their distribution under null, which tests
for the maximum convergence for the average across
the entire network. The p-values in this analysis were
corrected for multiple comparisons using Bonferroni’s
correction ( = 0.05 / 7 networks = 0.007).

3 Results

We identified 32 eligible whole-brain neuroimaging pa-
pers comparing LLD patients with HC individuals (Al-
bert, Gau, Taylor, & Newhouse, 2017; Bobb et al., 2012;
Bricenõ et al., 2015; Byun et al., 2016; Chen et al., 2012;
De Asis et al., 2001; Dombrovski et al., 2013; Dumas
& Newhouse, 2015; Fang et al., 2015; Guo et al., 2013;
Harada et al., 2018, 2016; Hou, Sui, Song, & Yuan, 2016;
C. M. Huang et al., 2019; Hwang et al., 2010; Lee, Liu,
Wai, Ko, & Lee, 2013; Li et al., 2020; Liu et al., 2012;
Mah, Williams, Leung, Freel, & Pollock, 2011; Oudega et
al., 2014; Rao et al., 2015; Respino et al., 2019; Ribeiz et
al., 2013; Smith, Kramer, et al., 2009; Takami, Okamoto,
Yamashita, Okada, & Yamawaki, 2007; L. Wang et al.,
2008; Weisenbach et al., 2014; Wong et al., 2016; Xie
et al., 2012; Yuan, Zhang, et al., 2008; Yuan, Zhu, et
al., 2008; Yue, Jia, Hou, Zang, & Yuan, 2015). Among
these, four groups of papers had (partially) overlapping
samples, including (Bricenõ et al., 2015; Rao et al., 2015;
Weisenbach et al., 2014), (Chen et al., 2012; Guo et al.,
2013; Liu et al., 2012), (Harada et al., 2018, 2016), and
(Yuan, Zhang, et al., 2008; Yuan, Zhu, et al., 2008). The
data from these papers was merged, yielding 26 inde-
pendent study populations with 674 LLD and 568 HC
participants (Fig. 1).

VBM was used in nine experiments, t-fMRI in 11
experiments, rs-fMRI in seven experiments, and PET in
two experiments. Task-based fMRI experiments were
performed with various cognitive (N = 7) and emotional
(N = 6) tasks. Of note, one t-fMRI study employed
two different cognitive tasks and one emotional task,
which were reported in separate papers (Bricenõ et al.,
2015; Rao et al., 2015; Weisenbach et al., 2014). The
demographic, clinical, and technical characteristics of
the included studies are summarized in Tables 1 and S2.

Fig. 2 illustrates the spatial distribution for peak coor-
dinates of all the experiments based on the direction of
the effects. Neither the primary nor the supplementary

analyses revealed any significant regional convergence
of neuroimaging findings for LLD (Table 2). In the
primary analysis, 26 experiments showing increased
or decreased grey matter density, functional activation,
or functional connectivity of the brain in LLD patients
yielded pcFWE = 0.828. Pooling over 17 experiments
reflecting increases (i.e. LLD > HC), and 19 experiments
representing decreases (i.e. HC > LLD) separately, re-
sulted in pcFWE = 0.181 and pcFWE = 0.903, respec-
tively. Restricting the analysis to experiments using
functional neuroimaging (N = 20), or fMRI (N = 18),
likewise, resulted in no significant convergence, with
pcFWE = 0.544 and pcFWE = 0.409, respectively. Repeat-
ing all analyses with threshold-free cluster enhancement
(TFCE), which is a potentially more lenient method of
multiple comparison correction, again resulted in no
significant convergence. Furthermore, ROI-based analy-
sis revealed no convergence of the reported coordinates
within the visual (punc = 0.650), somatomotor (punc =
0.459), dorsal attention (punc = 0.962), salience / ventral
attention (punc = 0.049), limbic (punc = 0.675), control
(punc = 0.635), and default (punc = 0.216) networks after
Bonferroni’s correction.

4 Discussions

Following the best-practice guidelines for conducting
meta-analyses, we observed no significant convergence
of regional brain abnormalities in LLD in both primary
and complementary analyses. The observed lack of
convergence indicates that the current literature on LLD
does not support consistent, localized pathophysiology.
Aspects that may have contributed to this null effect will
be discussed as follows.

4.1 Clinical and biological heterogeneity of
LLD

Depression is a heterogeneous diagnostic category with
regard to the individual differences in presentations,
treatment outcomes, comorbidities, genetic etiologies
and biological mechanisms (Goldberg, 2011; Lynch, Gun-
ning, & Liston, 2020). Considering the symptoms profile
alone, more than 200 unique combinations of symp-
toms can theoretically fulfil the DSM criteria for MDD
(Lynch et al., 2020). In addition, evidence from biochem-
ical, genetics, and neuroimaging studies have suggested
that MDD is biologically heterogeneous, meaning that
different mechanistic pathways converge to a common
phenotype, i.e., depression (for review see Beijers, War-
denaar, van Loo, & Schoevers, 2019). For instance, using
resting-state functional connectivity and symptom pro-
files, four subtypes of depression have been identified
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First Author (Year)a
Number (% female) Age mean ± SD / median (IQR)

Acute Depresssion Anti-depressants Age of Onset Neuroimaging Technique Task
LLD HC LLD HC

1 Albert, K (2017) 12 (100%) 21 (100%) 62.4 ± 5.7 60.6 ± 6.8 No Variable n.r. t-fMRI emotion dot probe
2 Bobb, DS (2012) 15 (80%) 13 (69%) 60.7 ± 4.7 62.0 ± 5.3 Yes Off n.r. t-fMRI stop signal task

3
Bricenõ, EM (2015) 26 (46%) 25 (48%) 65.4 ± 8.1 68.1 ± 8.2

Yes Variable EOD
t-fMRI facial emotion perception

Rao, JA (2015) 24 (n.r.) 23 (n.r.) 66.8 ± 8.2 67.9 ± 8.1 t-fMRI go/no-go
Weisenbach, SL (2014) 24 (58%) 23 (43%) 66.8 ± n.r. 67.9 ± n.r. t-fMRI semantic list learning

4 Byun, MS (2016) 29 (72%) 27 (48%) 71.6 ± 5.0 68.7 ± 6.0 Variable On LOD VBM

5
Chen, JD (2012) 16 (60%) 15 (60%) 67.5 ± 6.1 64.9 ± 3.7

Yes Drug-naive LOD
rs-fMRI (ReHo)

Guo, W (2013) 17 (60%) 16 (60%) 67.5 ± 6.1 64.9 ± 3.7 rs-fMRI (ALFF)
Liu, F (2012) 15 (60%) 15 (60%) 67.5 ± 6.1 64.9 ± 3.7 rs-fMRI (ReHo)

6 De Asis, J (2001) 6 (0%) 5 (0%) 70.7 ± n.r. 67.6 ± n.r. Yes Variable n.r. PET
7 Dombrovski, AY (2013) 31 (58%) 20 (60%) 66.3 ± 5.8 70.7 ± 8.7 Variable Variable n.r. t-fMRI probabilistic reversal learning
8 Dumas, JA (2015) 11 (n.r.) 12 (n.r.) 73.3 ± 3.3 72.6 ± 5.7 n.r. Variable Variable t-fMRI n-back
9 Fang, J (2015) 20 (00%) 18 (0%) 59.2 + 3.7 59.1 ± 7.5 Variable n.r. n.r. VBM, rs-fMRI (ALFF)

10
Harada, K (2016) 45 (67%) 61 (57%) 60.2 ± 8.2 62.9 ± 7.6

Yes Variable n.r.
VBM

Harada, K (2018) 16 (63%) 30 (62%) 56 (53.5-65.5) 58 (54-67) VBM
11 Hou, Z (2016) 31 (67%) 37 (51%) 68.0 ± 6.0 65.2 ± 7.5 Yes Off LOD rs-fMRI (VMHC)
12 Huang, CM (2019) 55 (69%) 40 (62%) 66.3 ± 5.4 68.1 ± 5.3 Yes Variable LOD t-fMRI color-word emotional Stroop
13 Hwang, JP (2010) 70 (00%) 26 (0%) 79.4 ± 5.3 79.5 ± 4.3 Yes n.r. LOD VBM
14 Lee, TW (2013) 14 (21%) 14 (35%) 65.1 ± 4.9 64.8 ± 4.2 Yes On LOD t-fMRI n-back
15 Li, J (2020) 50 (62%) 33 (48%) 66.6 ± 0.7 67.2 ± 0.8 Yes Variable Variable rs-fMRI (DC)
16 Mah, L (2011) 5 (0%) 8 (0%) 66 ± 6 69 ± 5 n.r. Drug-naive n.r. t-fMRI emotional judgment of faces
17 Oudega, ML (2014) 55 (65%) 23 (52%) 72.3 ± 7.8 70.3 ± 6.3 Yes Off Variable VBM
18 Respino, M (2019) 33 (63%) 43 (58%) 72.2 ± 6.6 73.4 ± 6.5 Yes Off n.r. rs-fMRI
19 Ribeiz, SRI (2013) 30 (76%) 22 (77%) 70.7 ± 6.5 70.4 ± 7.5 n.r. n.r. Variable VBM
20 Smith, GS (2009) 16 (62%) 13 (61%) 65.3 ± 9.1 67.4 ± 7.4 n.r. Off n.r. VBM, PET
21 Takami, H (2007) 10 (70%) 10 (60%) 62.5 ± 9.1 67.6 ± 9.7 No Variable LOD t-fMRI word generation
22 Wang, L (2008) 27 (44%) 20 (60%) 70.0 ± 5.7 73.1 ± 5.1 Variable Variable LOD t-fMRI emotional oddball task
23 Wong, NM (2016) 31 (54%) 23 (60%) 67.4 ± 5.4 67.1 ± 4.7 n.r. On LOD t-fMRI emotion processing
24 Xie, C (2012) 18 (77%) 25 (48%) 68.6 ± 6.8 74.2 ± 8.2 Yes Variable n.r. VBM

25
Yuan, Y (2008) 18 (55%) 14 (50%) 67.2 ± 7.3 67.1 ± 4.8

No Off LOD
rs-fMRI (ReHo)

Yuan, Y (2008) 19 (52%) 16 (50%) 67.2 ± 7.3 67.1 ± 4.8 VBM
26 Yue, Y (2015) 16 (50%) 16 (50%) 68.1 ± 5.2 68.2 ± 4.6 Yes Drug-naive LOD rs-fMRI (ALFF)

Table 1: Characteristics of studies included in the meta-analysis.

LLD = late-life derpession; HC = healthy control; SD = standard deviaiton; n.r. = not reported; EOD = early-onset
depression; LOD = late-onset depression; t-fMRI = task-based functional magnetic resonance imaging; rs-fMRI = resting-
state functional magnetic resonance imaging; VBM = voxel-based morphometry; PET = positron-emission tomography;
ReHo = regional homogeneity; ALFF = amplitude of low frequency fluctuations; DC = voxel-wise degree centrality;
VMHC = voxel-mirrored homotopic connectivity. a Publications with overlapping samples are grouped together

Imaging modality Contrast Number of experiments
p-value

TFCE cFWE

Structural or functional (VBM, PET, fMRI)
- 26 0.568 0.828

HC >LLD 19 0.755 0.903

LLD >HC 17 0.136 0.181

Functional (PET or fMRI) - 20 0.216 0.544

fMRI (task-based or resting-state) - 18 0.183 0.409

Table 2: Results of ALE meta-analyses on patients with late-life depression compared to healthy subjects by modality and
direction of effect.

VBM = voxel-based morphometry; PET = positron-emission tomography; fMRI = functional magnetic resonance imaging;
LLD = late-life depression; HC = healthy control; TFCE = threshold-free cluster enhancement; cFWE = family-wise error
at cluster level.
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Figure 2: The activation likelihood estimation meta-analysis steps.

Panel A shows the distribution of reported coordinates reflecting structural/functional brain alterations in patients with
late-life depression (LLD) compared to healthy control (HC) subjects. Panel B displays the modeled activation maps,
obtained by combining the reported coordinates modeled as 3D Gaussian distributions (red = LLD > HC, blue = HC >
LLD). Statistical testing against null-distribution, corrected for multiple comparisons using family-wise error correction at
the cluster level, showed no convergence of the reported abnormalities.

with distinct patterns of dysfunctional connectivity in
limbic and frontostriatal networks, distinct clinical pro-
files, and varying treatment responsiveness to repetitive
transcranial magnetic stimulation (Drysdale et al., 2017).

In the older adults, due to the aging and aging-related
comorbidities, the clinical and biological heterogeneity
of depression is more prominent (Alexopoulos, 2019;
Rutherford et al., 2017). Using clinical variables, a data-
driven analysis identified five distinct subtypes of LLD,
including ‘mild pure depression’, ‘severe pure depres-
sion’, ‘amnestic depression’, ‘frail-depressed, physically
dominated’, and ’frail-depressed, cognitively dominated’
with distinct remission and mortality rates (Lugtenburg
et al., 2020). Biologically, variable phenotypes of LLD
may result from multiple interacting or independent
pathways, including cerebrovascular aging, inflamma-
tion, and oxidative stress (reviewed by Alexopoulos,
2019; Rutherford et al., 2017). Cerebrovascular aging and
the ensuing small infarcts, which appear as white matter
hyperintensities (WMHs), may damage deep white mat-
ter tracts (Li Wang, Leonards, Sterzer, & Ebinger, 2014).
These infarcts can disrupt the connectivity of prefrontal
cortical regions to the limbic and striatal areas (Wen,
Steffens, Chen, & Zainal, 2014), leading to a subtype of

LLD characterized by executive dysfunction and anhe-
donia (Alexopoulos, 2019). Inflammation may be the
main culprit in another subtype of patients, in which
dopaminergic functioning is disturbed due to inflam-
mation (Bäckman, Nyberg, Lindenberger, Li, & Farde,
2006) and leads to cognitive and motor retardation and
impaired level of activity (Rutherford et al., 2017). Ox-
idative stress can also lead to depression through an
alternative mechanism, in which damages to mitochon-
drial DNA impairs its function, and in turn decreases
the amount of energy available, causing fatigue, reduced
physical and mental activity, and frailty (Rutherford et
al., 2017). Cognitive dysfunction is another important
source of heterogeneity in LLD. This symptom occurs
only in a subset of LLD patients ( 20-25%) (Koenig et
al., 2014), is presumed to be caused by variable mecha-
nisms, including glucocorticoid-induced hippocampal
atrophy, cerebrovascular aging, or Alzheimer’s disease-
related pathologies, and has variable clinical courses,
with some remaining stable, but others progressing to
vascular dementia or Alzheimer’s disease (Butters et al.,
2008; Koenig et al., 2014). Differences in the medication
status, clinical status (actue or chronic), severity of dis-
ease, comorbidities, sex and age of onset additionally
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contribute to the heterogeneity of LLD. For example,
LOD and EOD are different in many aspects, such as
clinical symptoms, genetic susceptibility, microvascular
abnormalities, and neuroimaging findings (Tittmann et
al., 2014). Taken together, LLD is a clinically and bio-
logically heterogeneous disease, likely caused by vari-
able pathophysiological processes, which are further
confounded by the presence or absence of other aging-
related comorbidities and neurodegenerative processes.
Therefore, we can argue that our lack of convergent
findings could in part be attributed to the varying com-
binations of subtypes included in each study and the
ensuing dilution of subtype-specific effects at the level
of individual studies and the meta-analysis.

4.2 Beyond the localized abnormalities of
grey matter

LLD may be associated with distributed brain network
abnormalities, rather than localized ones. In this case,
neuroimaging studies aimed at localizing the effects
would each pick up on different (due to noise and flexi-
bility, cf. section 4.1) distinct parts of the disturbed, dis-
tributed network, resulting in poor convergence of local
findings (Kharabian Masouleh, Eickhoff, Hoffstaedter,
Genon, & Alzheimer’s Disease Neuroimaging Initiative,
2019). Of note, in ALE meta-analyses, all seed-based
connectivity studies are excluded in order to ensure that
all the voxels have the same a priori chance of being
reported (Müller et al., 2018; Tahmasian et al., 2019). In
addition, ALE meta-analysis is a method of finding lo-
calized convergent abnormalities in the brain structure,
function or connectivity, which does not test the network
alterations associated with LLD. Nevertheless, we used a
ROI-based ALE approach to show that the reported foci
are not preferentially convergent in any of the specific
resting-state brain networks. The functional connectivity
studies on LLD have been reviewed elsewhere (Manning
et al., 2019; Tadayonnejad & Ajilore, 2014), indicating
increased functional connectivity in the default mode
network and salience network, but decreased functional
connectivity in executive control network, in addition to
decreased network efficiency, reduced network strength,
and increased long-range connections in LLD patients,
which are similar to the functional connectivity changes
in mid-life depression (Ebneabbasi et al., 2021; Mulders,
van Eijndhoven, Schene, Beckmann, & Tendolkar, 2015).

In addition, beyond the grey matter, the patho-
physiology of LLD is also associated with micro-
/macrostructural white-matter abnormalities. As de-
scribed above, cerebrovascular aging and WMHs are
associated with an increased risk of LLD (van Agtmaal,
Houben, Pouwer, Stehouwer, & Schram, 2017), partic-
ularly when located in the cingulum, uncinate fascicu-

lus, superior longitudinal fasciculus, frontal lobe, and
temporal lobe (Alexopoulos, 2019). In addition, a meta-
analysis on diffusion tensor imaging (DTI) studies of
LLD reported lower fractional anisotropy of the dorsolat-
eral prefrontal cortex and uncinate fasciculus, indicating
a possible role for the disruption of frontal and frontal-
to-limbic white matter tracts in the pathogenesis of LLD
(Wen et al., 2014).

4.3 Heterogeneity of the neuroimaging
methodology

The studies included in this meta-analysis used a wide
range of imaging acquisition techniques, preprocessing,
and analytic methods to explore various neurobiological
features of LLD. One notable source of methodological
heterogeneity across the included studies was the differ-
ent applied structural and functional imaging modalities
including VBM, rs-fMRI, t-fMRI, or PET. In addition, fur-
ther within the functional imaging studies (i.e., rs-fMRI,
t-fMRI, or PET), the subjects were engaged in different
mental states, either in the resting state (30%), or while
doing a variety of cognitive (30%) or emotional (23%)
task paradigms (e.g., n-back, stop-signal, Go/No-Go,
word generation, emotional judgement of faces) with
different visual or auditory stimuli which naturally in-
volve distinct neural processes. We can appreciate how
this can influence the findings, by looking at the results
of three included studies that using different tasks (i.e.,
facial emotion perception, Go/No-Go, and semantic list
learning) on the same sample found different, and in
some regions conflicting, results (Bricenõ et al., 2015;
Rao et al., 2015; Weisenbach et al., 2014). In rs-fMRI
experiments, an additional source of heterogeneity may
be the various applied analytical approaches, each de-
signed to capture a conceptually different aspect of the
whole-brain functional connectivity. For instance, while
Amplitude of Low Frequency Fluctuations (ALFF; 11%)
assesses the regional intensity of oscillatory fluctuations
in a voxel’s time series (Zou et al., 2008), Regional Ho-
mogeneity (ReHo; 11%) calculates the correlation of a
voxel’s time series with that of its nearest voxels (Zang,
Jiang, Lu, He, & Tian, 2004), and voxel-wise Degree
Centrality (DC; 3%) is a graph theory measure that rep-
resents the total weights of connections for a given voxel
(Rubinov & Sporns, 2010).

In both structural and functional neuroimaging stud-
ies, preprocessing steps and analytical flexibility regard-
ing design matrices, multiple comparison correction
methods, software packages, and even operating sys-
tems introduces another level of heterogeneity across
studies (Glatard et al., 2015; Poldrack et al., 2017). Of
note, the methodological flexibility of neuroimaging
studies is so diverse, that in a recent study, among 70
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independent teams analyzing the same fMRI dataset,
not even two teams chose identical analytic workflows
(Botvinik-Nezer et al., 2020).The experimental and ana-
lytical flexibility of neuroimaging methods is a double-
edge sword, as it allows investigating many diverse
aspects of neurobiology, but can also lead to spuri-
ous/false positive findings. This is particularly true
for low-powered studies and in the presence of lib-
eral thresholding and selective reporting (Button et al.,
2013). Low-powered studies are inherently prone to an
increased proportion of false positive findings, i.e., small
positive predictive value (Ioannidis, 2005). In addition,
they are more likely to fail to identify the effects, particu-
larly when they are small, and in a research community
that values statistical significance, are incentivized to
adopt questionable research practices, or “p-hacking”,
to “fish” for significant findings (Button et al., 2013). For
instance, they might choose to report the results that are
rather liberal and uncorrected for multiple comparisons,
as in 31% of our included studies. In this case, and
particularly given that the sample sizes in our included
studies were in the low to moderate range (median: 45,
range: 11-96), some of the reported foci included in our
meta-analysis may be non-replicable.

4.4 Overview of previous neuroimaging
meta-analyses on LLD

Previous CBMAs on LLD have solely focused on the
structural brain abnormalities, and reported conflict-
ing results (Boccia, Acierno, & Piccardi, 2015; Du et al.,
2014). They have identified convergence in a variety of
regions including the putamen, hippocampus, amyg-
dala, parahippocampal gyrus, medial frontal gyrus, sub-
callosal gyrus, and lingual gyrus (Du et al., 2014), as well
as the amygdala, thalamus, cingulate gyrus, precuneus,
superior frontal gyrus, and ventromedial frontal cortex
(Boccia et al., 2015). According to the recent best-practice
guidelines for neuroimaging meta-analyses, there are
some methodological issues in these studies. Firstly,
they lacked sufficient statistical power, as only nine
studies (including four studies with null results) were
included in (Du et al., 2014), and only six studies (nine
experiments) were included in (Boccia et al., 2015), both
below the number required for a robust meta-analysis
( 15), which makes their results unstable and suscep-
tible to the influence of a single experiment (Eickhoff
et al., 2016). Of note, the number of structural neu-
roimaging experiments included in our meta-analysis
(N = 9) was not sufficient, and we forewent a separate
analysis on these experiments. Secondly, in (Du et al.,
2014) effect size signed differential mapping (ES-SDM)
was utilized, which is an alternative CBMA method,
and considered statistically more lenient compared to

ALE, and is also different by taking studies with null
findings into account. Thirdly, both meta-analyses used
liberal methods of multiple comparison correction, and
were susceptible to false-positive findings. Specifically,
(Du et al., 2014) reported the results with uncorrected
threshold of p = 0.005 and Z > 1, and (Boccia et al., 2015)
used false discovery rate (FDR), which is more liberal
compared to cFWE, and is no longer recommended in
ALE meta-analyses (Eickhoff et al., 2016; Müller et al.,
2018; Tahmasian et al., 2019).

4.5 Limitations, recommendations and fu-
ture directions

ALE analyses with few number of experiments are un-
stable and largely influenced by a single experiment
(Eickhoff et al., 2016), and therefore, except for the com-
plementary analyses limited to the functional experi-
ments, our other pre-planned subgroup analyses limited
to e.g. structural experiments, rs-fMRI experiments, t-
fMRI experiments, specific task domains/paradigms,
specific methods of rs-fMRI analysis, or LOD/EOD
were not viable. It is important to note that because
of the differences between the imaging modalities, mul-
timodal CBMAs are subject to debate. However, a trade-
off is inherent to all meta-analytic approaches, includ-
ing CBMAs, between the power or generalizability of
the findings versus the homogeneity of the included
experiments, with their goal often being to maximize
power/generalizability while minimizing heterogeneity
to a reasonable extent, which is defined by the research
question of interest and the amount of available data
(Tahmasian, Zarei, et al., 2018). Multimodal CBMAs, e.g.
(Gray et al., 2020; Noordermeer, Luman, & Oosterlaan,
2016; Radua et al., 2012; Raschle, Menks, Fehlbaum,
Tshomba, & Stadler, 2015; Samea et al., 2019; Tahmasian,
Noori, et al., 2018), average over perhaps interesting
modality-specific findings, but have the advantage of
identifying robust findings which are consistent across
a larger number and more diverse range of studies. Of
note, with more neuroimaging studies published on
LLD, future updates to this meta-analysis would be able
to perform additional subgroup analyses, and identify
convergence across more homogenous data. In addi-
tion, CBMAs are based on limited spatial data, i.e., the
peak coordinates of significant regions between groups,
and are hence less powerful compared to the alterna-
tive image-based meta-analyses, which consolidate the
findings of studies using their unthresholded statistical
parametric maps (Salimi-Khorshidi, Smith, Keltner, Wa-
ger, & Nichols, 2009). Here, due to the sparsity of the
available statistical parametric maps, we were unable
to do an image-based meta-analysis on LLD. However,
we encourage authors to submit their statistical para-
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metric maps to open data sharing platforms such as
NeuroVault repository (https://neurovault.org/; Gor-
golewski et al., 2015), so that this more powerful method
of meta-analysis will be possible in the future. Finally,
an additional limitation of our study was that due to a
lack of consensus on the LLD definition, our included
studies had arbitrarily used variable age cut-offs to de-
fine LLD (ranging from 50 to 65, but more commonly
60).

This study, and previous meta-analyses on MDD
(Gray et al., 2020; Müller et al., 2017), have shown incon-
sistency of findings across neuroimaging studies on (late-
life) depression. Of note, this is not limited to depres-
sion, and has also been observed in e.g. insomnia disor-
der, narcolepsy, Parkinson’s disease, migraine, attention
deficit hyperactivity disorder, self-injurious thoughts, or
the impact of COMT Val158Met allele on brain activation
related to working memory (Giehl, Tahmasian, Eickhoff,
& van Eimeren, 2019; X. Huang, Rootes-Murdy, Basti-
das, Nee, & Franklin, 2020; Nickl-Jockschat, Janouschek,
Eickhoff, & Eickhoff, 2015; Samea et al., 2019; Sheng et
al., 2020; Tahmasian, Noori, et al., 2018; Tench, Tanas-
escu, Cottam, Constantinescu, & Auer, 2019). In order
to differentiate a true lack of localizable effects from
between-study variability, we recommend future studies
on (late-life) depression to (1) use larger sample sizes
ideally through collaborations such as The Enhancing
NeuroImaging Genetics through Meta-Analysis consor-
tium (Schmaal et al., 2020; Thompson et al., 2020) to ame-
liorate site-idiosyncrasies, (2) openly share their data to
allow replication and future integration, (3) standardize
experimental, preprocessing, and analytical methods or
at least establish replicability through providing suffi-
cient detail or code (Button et al., 2013), (4) focus more
on multivariate analytical approaches, which are better
equipped to detect abnormal brain networks (Khara-
bian Masouleh et al., 2019), (5) consider data-driven ap-
proaches to accommodate potential biological subtypes,
and (6) pre-register protocols for individual studies, as
well for meta-analyses to reduce publication bias.

5 Conclusions

In summary, following the current best-practice proto-
cols, in this pre-registered and sufficiently powered anal-
yses we did not observe any consistent local abnormality
in LLD. The combination of clinical/biological subtypes
and distributed patterns, in addition to the heterogene-
ity of protocols and selective reporting may explain the
lack of any localizable convergence for LLD. Our finding
emphasizes the importance of identifying LLD subtypes,
and taking them into account in the future studies and
highlights the need for using standard methodology of

future neuroimaging studies on (late-life) depression,
toward more reproducible, pre-registered and clearly
reported studies, which recruit more homogenous popu-
lations, and are aimed at identifying both localized and
distributed abnormalities of the brain.
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OR PET) AND (elderly[tiab] OR geriatric[tiab] OR "late life"[tiab]
OR "later life"[tiab] OR "late onset"[tiab] OR older[tiab] OR "old
age"[tiab]) AND (depress* OR MDD)

Embase (’voxel based morphometry’/exp OR ’voxel based morphometry’ OR
vbm OR ’functional magnetic resonance imaging’/exp OR ’functional
magnetic resonance imaging’ OR ’fmri’/exp OR fmri OR ’positron-
emission tomography’/exp OR ’positron-emission tomography’ OR
’pet’/exp OR pet) AND (elderly:ti,ab OR geriatric:ti,ab OR ’late
life’:ti,ab OR ’later life’:ti,ab OR ’late onset’:ti,ab OR older:ti,ab OR
’old age’:ti,ab) AND (depress* OR mdd)

Scopusa ("voxel based morphometry" OR VBM OR "functional magnetic
resonance imaging" OR fMRI OR "Positron-Emission Tomography"
OR PET) AND (elderly OR geriatric OR "late life" OR "later life" OR
"late onset" OR older OR "old age") AND (depress* OR MDD)

Web of Knowledgeb ("voxel based morphometry" OR VBM OR "functional magnetic
resonance imaging" OR fMRI OR "Positron-Emission Tomography"
OR PET) AND (elderly OR geriatric OR "late life" OR "later life" OR
"late onset" OR older OR "old age") AND (depress* OR MDD)
Table S1: Search query used in each database.

a In title, abstract or keywords. b In ‘topic’

First Author (Year)a Scanner Field Strength Software Multiple Comparison Correction Covariates Coordinates Space Source of Coordinates

1 Albert, K (2017) 3T SPM AlphaSim (k=58, p <0.000001) n.r. MNI Figure 3
2 Bobb, DS (2012) 3T FSL FWE n.r. MNI Table 2
3 Bricenõ, EM (2015) 3T FSL AlphaSim (k=55, p<0.005) n.r. MNI Table 3

Rao, JA (2015) 3T FSL, SPM AlphaSim (k=264 mm3, p<0.003) n.r. MNI Table 2
Weisenbach, SL (2014) 3T SPM AlphaSim (k=264 mm3, p<0.003) n.r. MNI Table 2

4 Byun, MS (2016) 3T SPM FWE (k=100) age, gender, education level MNI Table S3
5 Chen, JD (2012) 1.5T SPM AlphaSim (k=675 mm3, p<0.005) age, voxel-wise GM volume MNI Table 2

Guo, W (2013) 1.5T SPM FDR n.r. MNI Table 2
Liu, F (2012) 1.5T SPM Not Corrected (k=1483 mm3, p <0.005) age, voxel-wise GM volume MNI Table 2

6 De Asis, J (2001) n.a. SPM Not Corrected (p <0.01) global rCBF Talairach Text
7 Dombrovski, AY (2013) 3T AFNI AlphaSim (k=67) n.r. MNI Author
8 Dumas, JA (2015) 3T SPM Not Corrected (k=200) n.r. MNI Figure 1
9 Fang, J (2015) 1.5T SPM Corrected (method n.r.) n.r. MNI Tables 2, 3
10 Harada, K (2016) 3T SPM FWE n.r. MNI Table 2

Harada, K (2018) 3T SPM FWE n.r. MNI Text
11 Hou, Z (2016) 3T SPM AlphaSim (k=55, p <0.001) GM volume, age, gender, education level MNI Table 2
12 Huang, CM (2019) 3T SPM FWE (p<0.001) n.r. MNI Table 2
13 Hwang, JP (2010) 2T SPM Not Corrected (p <0.001) age, education level, duration of illness MNI Table 2
14 Lee, TW (2013) 3T AFNI FWE (k=20, p<0.005) n.r. Talairach Table 4
15 Li, J (2020) 3T SPM AlphaSim (p <0.001) age, gender education level, MMSE score, framewise displacement MNI Table 2
16 Mah, L (2011) 3T n.r. n.r. n.r. Talairach Text
17 Oudega, ML (2014) 1T SPM Not Corrected (k=50, p <0.001) GM volume MNI Table 2
18 Respino, M (2019) 3T SPM FWE (p<0.001) sex, education, mean framewise displacement MNI Table 2
19 Ribeiz, SRI (2013) 1.5T SPM FWE GM volume, education level Talairach Text
20 Smith, GS (2009) 1.5T SPM Not Corrected (k = 50, p <001) n.r. MNI Tables 1, 3b
21 Takami, H (2007) n.r. SPM Not Corrected (p <0.001) n.r. Talairach Table 3
22 Wang, L (2008) 4T custom script Not Corrected (k = 5, p <001) age, education level, number of episodes, duration of disease MNI Table 2
23 Wong, NM (2016) 3T FSL FWE (p<0.001) n.r. MNI Text
24 Xie, C (2012) 3T SPM FDR (k=150) age, gender, education level, intracranial volume MNI Table 2
25 Yuan, Y (2008a) 1.5T SPM, AFNI AlphaSim (k=270 mm3, p<0.005) n.r. Talairach Table 2

Yuan, Y (2008b) 1.5T SPM Not Corrected (k=80 mm3 ,p<0.001) n.r. MNI Table 2
26 Yue, Y (2015) 3T SPM Monte Carlo (k=2079 mm3, p <0.05) n.r. MNI Table 2

Table S2: Technical details of studies included in the meta-analysis.

n.r. = not reported; n.a. = not applicable; T = Tesla; SPM = Statistical Parametric Mapping; FSL = FMRIB Software Library;
AFNI = Analysis of Functional NeuroImages; FWE = family-wise error correction; FDR = false discovery rate; GM =
grey matter; rCBF = relative cerebral blood flow; MMSE = mini-mental state examination; MNI = Montreal Neurological
Institute; a Publications with overlapping samples are grouped together
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